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Why do we do semantics?

"We take meaning to be the relation between the
form and something external to language.”

— Bender & K., "octopus paper", 2020

“Semantics with no treatment of truth-conditions
is not semantics.”

— David Lewis, General Semantics,1972
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Why do we care about truth conditions?

We would like to solve complex problems that are specified in language,
and this is easier if we first map it to a formal language.

Many complex problems rely on the truth conditions of the sentence.
Logic connects truth conditions and proof theory.

All men are mortal.

Socrates is a man.

At the other end of Pennsylvania Avenue,
people began to line up for a White House tour.

Therefore, Socrates is mortal.

(Syllogism, Aristotle, 350 BC)

People formed a line at the end of
Pennsylvania Avenue.

(MNLI dataset, 2018)
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Complex problems: Planning

Logic can be used in many ways to address different complex problems.
Truth conditions may look quite different than in semantics textbooks.
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precondition: on(X,Y)
effect: —on(X, Y) A on-table(X)




Complex problems: Optimization

Logic can be used in many ways to address different complex problems.
Truth conditions may look quite different than in semantics textbooks.

Minimize
290 x12 + 585 x13 + 575 x14
+ 290 x21 + 775 x23 + 430 x24
+ 585 x31 + 775 x32 + 575 x34
+ 575 x41 + 430 x42 + 575 x43
Subject To
outl: x12 + x13 + x14 =1
outZ: x21 + x23 + x24 =1
out3: x31 + x32 + x34 =1
outd: x41 + x42 + x43 =1
"Find the shortest round trip."

Traveling Salesman Problem Linear Program (LP)




Broad-Coverage Problem Solving

\ Problem instance with n cities ‘

param n := 5;

\ Variables: x[i, j] = 1 if the tour goes from cit
var x{i in 1..n, j in 1..n} binary;

> var u{i in 2..n} >= 1, <= n-1;
\ Objective: Minimize total travel cost
> minimize total_cost: sum{i in 1..n, j in 1..n} c[i, j]
S
///\\\\\ \ Constraints: Every city has exactly one incoming and
NP VP subject to in_degree{j in 1..n}: sum{i in 1..n, i != j}
//“\\ | subject to out_degree{i in 1..n}: sum{j in 1..n, j != i

The boy sleeps

Step 3.3: Find the Optimal Tour

We evaluate all 24 possible tours:

1. (122->3->4->5->1):
Cost=10+35+12+18 + 25 =100

2. (122233534 1):
Cost=10+35+ 8 + 18 + 20 = 91

3.(12224-53>55->1):
Cost=10+30+12+8+25=85

\ Problem instance with n cities ‘

param n i= 5;

\ Variables: x[i, j] = 1 if the tour goes from ci
var x{i in 1..n, j in 1..n} binary;
var u{i in 2..n} >= 1, <= n-1;

> \ Objective: Minimize total travel cost
minimize total_cost: sum{i in 1..n, j in 1..n} c[i, j]

\ Constraints: Every city has exactly one incoming and
subject to in_degree{j in 1..n}: sum{i in 1..n, i !'= j}
subject to out_degree{i in 1..n}: sum{j in 1..n, j != i
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Reasoning or reciting?

Arithmetic
random ;
GPT-4 . ]
Performance E
0 100
27+62
Default in base-10
—
‘D 89
Counterfactual in base-9
—
‘D 100

Code Exec.
—
.

sorted(
[“ab”’ ‘(ba”] y
) key=lambda x: x[1],

in Python
[“ba’, : “ab7’]
w/ 1-based indexing

[“ab”’ “ba”]

Code Gen.
—
L

Sort list by the
second element

in Python

sorted(

list,

key=lambda x: x[1],
D)

w/ 1-based indexing

sorted(

SIS TER

key=lambda x: x[2],
D)

Basic Syntax

Find the main
subject and verb

“They think LMs are
the best.” in
subj-verb-obj order

(they, think)

“Think are the best
LMs they.” in
verb-obj-subj order

(they, think)

Logic
I
- —

If XareV,Y are Z.
Are X Z?

X = corgis
Y = mammals
Z = animals

Yes

X = corgis
Y = reptiles
Z = plants

Yes

"Reasoning": system actually solves the problem, generalize to arbitrary instances.

"Reciting": system replicates solutions (or solution methods) from training data,

expect worse generalization.

(Wu et al. 2024)
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Themes for this talk

® Symbolic representations
® Generalization

® Truth conditions




#1
Planning
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Planning

Example: Blocksworld (simplified)

I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the
— actions I can do

Pick up a block

Unstack a block from on top of another block
Put down a block

Stack a block on top of another block

oL I have the following restrictions on my actions:
initial state I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.

H L. ]
.. [STATEMENT]

As initial conditions I have that, the red block is clear, the blue block is clear, the yellow

— block is clear, the hand is empty, the blue block is on top of the orange block, the red block
— 1is on the table, the orange block is on the table and the yellow block is on the table.

My goal is to have that the orange block is on top of the blue block.

My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block

pick up the orange block (One-shot prompting strategy of
stack the orange block on top of the blue block
[PLAN END] Valmeekam et al. 2023)




LLM planning on IPC benchmarks

PDDL2NL | Symbolic Baselines

Domains CoT ReA|rnd BrFS 1lmc f£ff
barmanl1/14 (10) 0 3 0 10 3 10
blocks00 (35) 3 221 0 21 28 35
childsnack14 (16) 6 15 0 0O O 16
gripper98 (19) 12 19| O 7 6 19
logistics98/00 (29) 1 281 O 12 21 29
movie98 (29) 29 291 0 29 29 29
rovers06 (6) 1 5 0 6 6 6
satellite02 (5) 1 41 0 5 5 5
transportO8/11 (31) 3 23 0 18 19 31
visitall11/14 (13) 6 13 0 13 13 13
others (482 1n 27 domains) 4 18 1 291 311 482
> (67)5) 66 179 I 412 1 675

We excluded the remaining four IPC domains for cost reasons.

(AutoPlanBench: Stein, ..., K. ICAPS 2025; Valmeekam et al. 23)



Generalized planning with LLMs

Val Val
plan validator plan validator
o4 A
O \ /
= &
S s 50
= validation S
L 9
- problems S
QL
V)
v v
Domain > NL Strategy > Code
|
|
We can move a stack of n disks from x to y def hanoi_gen(n, s, t, aux):
by first moving the top n-1 disks to z, if n==1:
ﬁ ‘ ‘ then moving the nth disk to y, elsefleld (s, ©
and then moving the n-1 disks from z to y. yield from hanoi_gen(n-1, s, aux, t)
yield (s, t)
— yield from hanoi_gen(n-1, aux, t, s)

Multi-code

(Silver et al. 24; Stein, ..., K. submitted) 12 N



Results

Ours Ours
Domain Silver et al. Ours w/o multicode w/o strat. refinement
Logistics 44 100 94 /76
Visitall 80 100 33 /8
Blocksworld 11 7/ 6 5
Goldminer 0 10 2
Minigrid 30 48 36 37
Miconic Z. 68 0 1
Spanner 6 67 33 67
Ferry 100 100 35 100
Heavy 67 100 100 100

(% solved correctly for GPT-40; domains in italics were already in Silver et al. 2024) 13 Yo N



Length generalization

Accuracy

Accuracy

100-
90+
80-
70-
60-
50+
40+
30+
20-

10+

L
5 101418222630343842465054586266707478

100
90-
80
70+
60-
50
40-
30
20+

10+

Accuracy Generalized Planning (GP, best seed) vs ReAct by number of objects

—o— ferry: ReAct
ferry: GP

Number of objects
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—o— transport: ReAct
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5 10141822 263034 3842465054'58'6266 7074 78
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Hard Everyday Optimization Problems

Textbook problem (GRAPH-COLORING)
Given an undirected graph G = (V, E), assign
colors to the nodes such that no two

adjacent nodes have the same color. Use as
few colors as possible.

Costumed problem (€ Parties With Exes)

Your birthday is coming up, and you want to
celebrate with all your friends. You do not
want people who used to be in a
relationship at the same party.

How many parties do you need?

Inverted problem

Given an undirected graph G = (V, E), assign
colors to the nodes such that no two non-
adjacent nodes have the same color. Use as
few colors as possible.

(Duchnowski, Pavlick, K., EMNLP Findings 2025)




Evaluation

e EHOP dataset: 3 NP-hard problems x 4 costumes x inverted/not;
25 random instances for each of 6 instance sizes.

® '"Traditional" LLMs: GPT-40, LIama-3.1-70B-Instruct, Qwen 3
"Reasoning" LLMs: DeepSeek-R1, Qwen 3 thinking

® |nvestigate how LLMs solve the problems by themselves ...

® ..and as "semantic parsers" that map the NL description
into linear programs, which are then solved by an exact solver.

Z

¢
y

(Duchnowski, Pavlick, K., EMNLP Findings 2025) 17 }él'



Scaling to larger instances is hard

Graph Coloring Knapsack Traveling Salesman

T'\l/$ T TS S | | | A PR S v ! !
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40 \/ — =@=GPT One-Shot CoTl
°®
=@= GPT ILP Python
@+ GPT OPRO
— -1 Llama One-Shot CoTl —
20 N

Llama ILP Python
- Greedy

] 1
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Problems solved much more accurately with help from the exact solver (ILP).

LLMs by themselves rarely beat the greedy heuristics.

(Duchnowski, Pavlick, K., EMNLP Findings 2025)




Textbook is easier than "everyday" variants

© Siad |

Problem Variant One-Shot  Zero-Shot Col One-Shot Col  ILP Python  Greedy
Textbook 42.0 60.7 60.0 56.0 98.0
/ GCP Inverted -39.3 -594 -59.3 -41.3
Costumed -6.2 -6.5 -4.7 -43.8
Textbook 22.7 48.0 50.0 89.3 75.3
@ KSP Inverted +4.6 +2.7 -4.7 -0.6
Costumed -2.0 -1.8 -2.2 -7.5
Textbook 34.7 31.3 37.3 86.0 30.7
A TSP Inverted -20.7 -14.0 -9.3 -10.7
Costumed -8.3 -1.7 -9.1 -37.1

(% optimally solved with GPT-40)



Takeaways

e LLM solvers methods do not scale well to larger instances.

Neurosymbolic "ILP-Python" method works best overall.

e All methods are vulnerable to costuming and especially inversion.

LLMs adapt solution paths for frequent textbook problems,

rather than performing general-purpose problem solving.

® Reasoning models (DeepSeek-R1)
are more robust to presentation,
but still do not reason reliably.

(Duchnowski, Pavlick, K., EMNLP Findings 2025)

Problem Variant Zero-Shot ILP Python
Textbook 98.0 94.0
7 GCP Inverted -75.0 -56.0
Costumed -4.0 +3.3
Textbook 48.7 97.3
W KSP Inverted +14.0 +0.7
Costumed +5.1 +1.6
Textbook 32.0 72.7
¢ TSP Inverted -0.7 +8.6
Costumed -10.7 +4.2

(DeepSeek-R1 on EHOP-HARD)
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Some general thoughts




Solving complex problems with LLMs

LLMs offer unprecedented breadth of coverage and will play a role
in putting domain-independent problem solving into lay hands.

® Domain independence not as strong as one might think.

® Inclusion of symbolic representation helps with generalization.

Task Challenge Symbolic components
Planning length generalization generalized plans
Optimization presentation dependence linear programs
Collaborative optimization state tracking symbolic memory

(Collaborative optimization: Jekni¢, Duchnowski, K., SIGDIAL 2025) 22 }él‘
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Symbolic models are generalization machines

def hanoi(n, source, destination, aux):
1f n == 1:
print(f"move({source}, {destination})")
else:
hanoi(n-1, source, aux, destination)
print(f"move({source}, {destination})")
hanoi(n-1, aux, destination, source)

S
.-'f’\
NP VP
| --""""/\
Ava V NP
| A

saw NP PP
| T
the ball |in NP

NP PP
| T
the bowl |on NP

(COGS corpus, Kim & Linzen 20) the table

If a symbolic program performs
correctly for input sizes 1, ..., 10,
it probably works for 20 too.

If a (neuro)symbolic model performs
correctly for depth 0-2, it probably
works for depth 3-12 too

(= compositionality).

(AM parser; Groschwitz, ..., K. ACL 2018)
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LLMs don't generalize in that way

* City 1 and city 2 are 15 miles apart.
City 1 and city 3 are 14 miles apart.
City 1 and city 4 are 14 miles apart.
City 2 and city 3 are 16 miles apart.
City 2 and city 4 are 1 miles apart.
City 3 and city 4 are 16 miles apart.

* City 1 and city 2 are 8 miles apart.
City 1 and city 3 are 14 miles apart.
City 1 and city 4 are 13 miles apart.
City 2 and city 3 are 6 miles apart.
City 2 and city 4 are 15 miles apart.
City 3 and city 4 are 3 miles apart.

from gurobipy import GRB, Model, quicksum

def f():
# Create the model
model = Model("TSP")

# Objective: Minimize the total travel distance
model.setObjective(quicksum(distances[i, j1 * x[1, 7]

for i in range(n) for j in range(n) if i !'= j), GRB.MINIMIZE)

from gurobipy import GRB, Model, quicksum

def f(O):
# Create the model
model = Model("TSP")

# Objective: Minimize the total travel distance
model.setObjective(quicksum(distances[1+1, j+1] * x[1, 7]
for 1 1in range(n) for j in range(n) if 1 != j), GRB.MINIMIZE)
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Risk profiles
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Can we get correctness guarantees?

e No output of an LLM should ever be trusted;
there are no guarantees of correctness or generalization.

® Inductive risk (Hempel 1965): How do you infer universal
correctness from finite observations?

® \We can potentially verify the universal correctness of an
LLM-generated symbolic artefact (generalized plan, LP, ...).

® But there is no verification without truth conditions!
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Conclusion

“Semantics with no treatment
of truth-conditions is not

semantics.” (Lewis 1972)

Semantics needs truth conditions

© Oiag

Problem Variant One-Shot  Zero-Shot Col  One-Shot Col  ILP Python  Greedy
Textbook 42.0 60.7 60.0 56.0 98.0
/7 GCP Inverted -39.3 -59.4 -59.3 -41.3
Costumed -6.2 -6.5 -4.7 -43.8
Textbook 22.7 48.0 50.0 89.3 75.3
@ KSP Inverted +4.6 +2.7 -4.7 -0.6
Costumed -20 -1.8 -2.2 -7.5
Textbook 34.7 31.3 373 86.0 30.7
K TSP Inverted -20.7 -14.0 -9.3 -10.7
Costumed -8.3 -1.7 -91 -37.1

Optimization with LLMs

def hanoi(n, source, destination, aux):
if n ==
print(f"move({source}, {destination})")
else:
hanoi(n-1, source, aux, destination)
print(f"move({source}, {destination})")
hanoi(n-1, aux, destination, source)

all

Generalized planning with LLMs

Verification needs truth conditions
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Thank you!
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