
NEURO
EXPLICIT
MODELS

Alexander Koller
Saarland University

23 September 2025

Solving complex problems
with large language models

Why do we do semantics?

2

“Seman;cs with no treatment of truth-condi;ons
is not seman;cs.”

— David Lewis, General Seman*cs,1972

"We take meaning to be the rela;on between the
form and something external to language."

— Bender & K., "octopus paper", 2020

Why do we care about truth conditions?

3

We would like to solve complex problems that are specified in language,
and this is easier if we first map it to a formal language.

Many complex problems rely on the truth conditions of the sentence.
Logic connects truth conditions and proof theory.

All men are mortal.

Socrates is a man.

Therefore, Socrates is mortal.

At the other end of Pennsylvania Avenue,
people began to line up for a White House tour.

People formed a line at the end of
Pennsylvania Avenue.

(Syllogism, Aristotle, 350 BC) (MNLI dataset, 2018)

Complex problems: Planning

4

Logic can be used in many ways to address different complex problems.
Truth conditions may look quite different than in semantics textbooks.

pop(R, Y) stack(Y, G) stack(R, Y)

stack(R, G)

stack(G, R) . . .

. . .

ini;al state
goal state

pop(X, Y)

precondition: on(X, Y)
effect: ¬on(X, Y) ∧ on-table(X)

Complex problems: Optimization

5

430 290

585
575

575

Hamburg

Cologne Berlin

Munich

775

"Find the shortest round trip."

Minimize
 290 x12 + 585 x13 + 575 x14
+ 290 x21 + 775 x23 + 430 x24
+ 585 x31 + 775 x32 + 575 x34
+ 575 x41 + 430 x42 + 575 x43

Subject To
 out1: x12 + x13 + x14 = 1
 out2: x21 + x23 + x24 = 1
 out3: x31 + x32 + x34 = 1
 out4: x41 + x42 + x43 = 1
...

Traveling Salesman Problem Linear Program (LP)

Logic can be used in many ways to address different complex problems.
Truth conditions may look quite different than in semantics textbooks.

Broad-Coverage Problem Solving

6

S

NP

The boy

VP

sleeps

Reasoning or reciting?

7

Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pages 1819–1862

June 16-21, 2024 ©2024 Association for Computational Linguistics

Default

Counterfactual

27+62

in base-10

89

in base-9

100

Arithmetic
random

sorted(
 [“ab”, “ba”],
 key=lambda x: x[1],
)

in Python

[“ba”, “ab”]

w/ 1-based indexing

[“ab”, “ba”]

Code Exec.

GPT-4
Performance

If X are Y, Y are Z.
Are X Z?

X = corgis
Y = mammals
Z = animals

Yes

X = corgis
Y = reptiles
Z = plants

Yes

Logic

Find the main
subject and verb

“They think LMs are
the best.” in
subj-verb-obj order

(they, think)

“Think are the best
LMs they.” in
verb-obj-subj order

(they, think)

Basic Syntax

Sort list by the
second element

sorted(
 list,
 key=lambda x: x[1],
)

in Python

sorted(
 list,
 key=lambda x: x[2],
)

w/ 1-based indexing

Code Gen.

0 100

1819

(Wu et al. 2024)

"Reasoning": system actually solves the problem, generalize to arbitrary instances.

"Reciting": system replicates solutions (or solution methods) from training data,
expect worse generalization.

Themes for this talk

● Symbolic representations

● Generalization

● Truth conditions

8

#1
Planning

Planning

pop(R) stack(Y, G) stack(R, Y)

stack(R, G)

stack(G, R) . . .

. . .

ini;al state
goal state

Example: Blocksworld (simplified)

10

One-shot prompt for Plan Generation with GPT-4’s plan

==
I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the

actions I can doω→

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear. A block is clear

if the block has no other blocks on top of it and if the block is not picked up.ω→
I can only unstack a block from on top of another block if the block I am unstacking was really on

top of the other block.ω→
I can only unstack a block from on top of another block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block

is clear.ω→
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block is no longer clear.

[STATEMENT]
As initial conditions I have that, the red block is clear, the blue block is clear, the yellow

block is clear, the hand is empty, the blue block is on top of the orange block, the red block
is on the table, the orange block is on the table and the yellow block is on the table.

ω→
ω→
My goal is to have that the orange block is on top of the blue block.

My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that, the red block is clear, the yellow block is clear, the hand is

empty, the red block is on top of the blue block, the yellow block is on top of the orange
block, the blue block is on the table and the orange block is on the table.

ω→
ω→
My goal is to have that the orange block is on top of the red block.

My plan is as follows:

[PLAN]
--------- GPT-4 response ---------
unstack the yellow block from on top of the orange block
put down the yellow block
unstack the red block from on top of the blue block
put down the red block
pick up the orange block
stack the orange block on top of the red block
[PLAN END]
--------- Extracted plan ---------
(unstack yellow orange)
(put-down yellow)
(unstack red blue)
(put-down red)
(pick-up orange)
(stack orange red)

-------- Ground truth plan ---------
(unstack yellow orange)
(put-down yellow)
(pick-up orange)
(stack orange red)
================SUCCESS================

Cost-Optimal Planning: The prompt is quite similar to the one used in the earlier test case with a
few changes. We modify the lifted domain description by including a statement that associates a cost
with each action. To make the concept of action cost better fit into common sense domains, we can

6

One-shot prompt for Plan Generation with GPT-4’s plan

==
I am playing with a set of blocks where I need to arrange the blocks into stacks. Here are the

actions I can doω→

Pick up a block
Unstack a block from on top of another block
Put down a block
Stack a block on top of another block

I have the following restrictions on my actions:
I can only pick up or unstack one block at a time.
I can only pick up or unstack a block if my hand is empty.
I can only pick up a block if the block is on the table and the block is clear. A block is clear

if the block has no other blocks on top of it and if the block is not picked up.ω→
I can only unstack a block from on top of another block if the block I am unstacking was really on

top of the other block.ω→
I can only unstack a block from on top of another block if the block I am unstacking is clear.
Once I pick up or unstack a block, I am holding the block.
I can only put down a block that I am holding.
I can only stack a block on top of another block if I am holding the block being stacked.
I can only stack a block on top of another block if the block onto which I am stacking the block

is clear.ω→
Once I put down or stack a block, my hand becomes empty.
Once you stack a block on top of a second block, the second block is no longer clear.

[STATEMENT]
As initial conditions I have that, the red block is clear, the blue block is clear, the yellow

block is clear, the hand is empty, the blue block is on top of the orange block, the red block
is on the table, the orange block is on the table and the yellow block is on the table.

ω→
ω→
My goal is to have that the orange block is on top of the blue block.

My plan is as follows:

[PLAN]
unstack the blue block from on top of the orange block
put down the blue block
pick up the orange block
stack the orange block on top of the blue block
[PLAN END]

[STATEMENT]
As initial conditions I have that, the red block is clear, the yellow block is clear, the hand is

empty, the red block is on top of the blue block, the yellow block is on top of the orange
block, the blue block is on the table and the orange block is on the table.

ω→
ω→
My goal is to have that the orange block is on top of the red block.

My plan is as follows:

[PLAN]
--------- GPT-4 response ---------
unstack the yellow block from on top of the orange block
put down the yellow block
unstack the red block from on top of the blue block
put down the red block
pick up the orange block
stack the orange block on top of the red block
[PLAN END]
--------- Extracted plan ---------
(unstack yellow orange)
(put-down yellow)
(unstack red blue)
(put-down red)
(pick-up orange)
(stack orange red)

-------- Ground truth plan ---------
(unstack yellow orange)
(put-down yellow)
(pick-up orange)
(stack orange red)
================SUCCESS================

Cost-Optimal Planning: The prompt is quite similar to the one used in the earlier test case with a
few changes. We modify the lifted domain description by including a statement that associates a cost
with each action. To make the concept of action cost better fit into common sense domains, we can

6

[. . .]

(One-shot promp;ng strategy of
Valmeekam et al. 2023)

LLM planning on IPC benchmarks

11

task descriptions (with exception of Floortile where all LLM610

methods failed). As can be seen from the BrFS results, the
evaluated tasks are fairly small, and yet LLM methods fail
to solve them all. The performance of LLM-based methods
significantly lag behind symbolic methods: lmc and ff solve
all tasks, and even BrFS solves all tasks except for two in615

Floortile (the average runtime of lmc, ff and BrFS was 0.2,
0.1 and 6 seconds, respectively). This behaviour was already
observed before—here, we provide a more comprehensive
evaluation enabled by the automatic generation of NL de-
scriptions. Nevertheless, we can also see some encouraging620

results with ReA in many domains.

Scaling experiments. To see how far the LLM action
choice mechanisms can scale, we conduct more experiments
with larger generated tasks. We focus on Blocksworld, Ferry,
Grippers, and Visitall because ReA performs very well there625

and it is easy to scale these domains with a single parameter.
The scaled data for these domains is created as follows.

For each domain, we randomly generate a set of tasks, al-
ways varying only a single parameter: the number of blocks,
cars, balls and locations for Blocksworld, Ferry, Grippers630

and Visitall, respectively (see supplementary material Ap-
pendix B for more details). Then we run BrFS and lmc on
each task with 30 minutes and 8 GB limits. Then we identify
the value N of the varied parameter (e.g., number of balls in
Grippers) at which either BrFS or lmc is unable to solve the635

task. For the final dataset we select 20 problems per domain
for which the scaled parameter values are around the identi-
fied threshold N . We use the same few-shot examples as in
the first round of experiments. The bottom part of Table 2
shows the coverage on the scaled benchmark set.640

rnd can solve only a single task in Visitall, confirming
the vast superiority of LLM-based methods as much more
informed. BrFS is much better, but is also challenged by
the size of these tasks. It is outperformed by ReA in all do-
mains. While BrFS is a very basic symbolic baseline, this645

provides additional evidence of ReA’s planning abilities. In-
deed, remarkably, ReA outperforms the state-of-the-art opti-
mal planner lmc in 2 domains (and matches its performance
in 1). This is remarkable given that ReA, in contrast to lmc,
does not perform any search. On the other hand, it should650

be noted that Ferry and Grippers are structurally simple do-
mains, and that ReA—in contrast to lmc—does not give any
plan-optimality guarantee. The satisficing planner ff, which
is comparable to ReA in that regard, still has perfect cover-
age also on these scaled tasks, so the benchmarks are still not655

“hard enough” to be challenging for satisficing planning.
Overall, while LLM action choice at this point lags far

behind symbolic planners, there are isolated islands of good
performance, and our results do show promise for LLM
planning abilities, in particular if used as part of a larger660

symbolic planning machinery (as in case of Act and ReA).

IPC benchmarks. We also conducted experiments on a
subset of IPC domains with the best plan-generation (CoT)
and policy (ReA) methods (see Table 3). CoT and ReA solved
less than 25% in 32 and 27 IPC instance suites, respec-665

tively, and 0 tasks in 29 and 20 instance suites, respectively.
CoT solved all tasks solved by ff only in movie98, but ReA

Domains PDDL2NL Symbolic Baselines
CoT ReA rnd BrFS lmc ff

barman11/14 (10) 0 3 0 10 3 10
blocks00 (35) 3 22 0 21 28 35
childsnack14 (16) 6 15 0 0 0 16
gripper98 (19) 12 19 0 7 6 19
logistics98/00 (29) 1 28 0 12 21 29
movie98 (29) 29 29 0 29 29 29
rovers06 (6) 1 5 0 6 6 6
satellite02 (5) 1 4 0 5 5 5
transport08/11 (31) 3 23 0 18 19 31
visitall11/14 (13) 6 13 0 13 13 13
others (482 in 27 domains) 4 18 1 291 311 482
! (675) 66 179 1 412 441 675

Table 3: Number of solved tasks for selected IPC instance
suites. “others”: sum over IPC instance suites where both
CoT and ReA solved less than 25% of instances.

matched the performance of ff in movie98 and gripper98
(and 3 more suites limited to instances solved by BrFS), and
solved only one less task in childsnack14 and logistics00 670

(and 2 more suites limited by BrFS). This shows that LLM-
based methods are usually unable to scale to larger instances,
but also that there are domains where ReA is able to achieve
a good performance. In fact, it seems that ReA either works
fairly well or not at all (with very few outliers). 675

6 Conclusion
LLMs are rapidly gaining prominence in many sub-areas of
AI, and the question if and how they can be applied in AI
Planning is highly relevant. Following up on previous work
in this direction, we show how to automate the conversion of 680

PDDL into natural language prompts. Based on this, we con-
tribute broad experiments, highlighting that the automatic
conversion does not result in a performance loss relative to
the previous hand-crafted prompts, and examining perfor-
mance relative to representative symbolic methods. The re- 685

sults enhance our knowledge of LLM action choice perfor-
mance, and demonstrate convincingly that LLMs do have
some action-choice ability, outperforming random action se-
lection and, in a few cases, even a state-of-the-art optimal
planner. This performance is still far from the state of the art 690

in symbolic (satisficing) planning, yet it is achieved without
any search, pointing to the potential of more general uses of
LLMs in planning.

The most direct question for future work, in our view, is
how to combine LLMs with symbolic search methods. Our 695

work lays the basis for that through the automatic transla-
tion of PDDL into natural language prompts, which as our
results show boosts the LLM’s planning ability. The space
of possible combinations is vast. One could use the LLM to
suggest preferred actions in search, one could search around 700

LLM-predicted plans or actions, one could apply plan re-
pair to the LLM’s suggestion (as suggested by (Valmeekam
et al. 2023b) with LPG (Gerevini, Saetti, and Serina 2003)),
one could use LLM-generated plans as the basis for heuristic
functions, etc. For further research on the question whether 705

LLMs on their own (without search) can yield better plan-
ning performance, specialized training or neurosymbolic
methods may be interesting to look at.

We excluded the remaining four IPC domains for cost reasons.

(AutoPlanBench: Stein, ..., K. ICAPS 2025; Valmeekam et al. 23)

Generalized planning with LLMs

12

Domain NL Strategy Code

We can move a stack of n disks from x to y
by first moving the top n-1 disks to z,
then moving the nth disk to y,
and then moving the n-1 disks from z to y.

def hanoi(n, source, destination, aux):  
 if n == 1:
 print(f"move({source}, {destination})")  
 else:
 hanoi(n-1, source, aux, destination)  
 print(f"move({source}, {destination})")  
 hanoi(n-1, aux, destination, source)  

(Silver et al. 24; Stein, ..., K. submiled)

D
eb

ug
gi

ng

Val
plan validator

Val
plan validator

Se
lf-

re
fin

em
en

t

validation
problems

def hanoi_gen(n, s, t, aux):
 if n == 1:
 yield (s, t)
 else:
 yield from hanoi_gen(n-1, s, aux, t)
 yield (s, t)
 yield from hanoi_gen(n-1, aux, t, s)

Multi-code

Results

13

Domain Silver et al. Ours
Ours

w/o multicode
Ours

w/o strat. refinement
Logistics 44 100 94 76
Visitall 80 100 33 78
Blocksworld 11 7 6 5
Goldminer 0 10 2 3
Minigrid 30 48 36 37
Miconic 4 68 0 1
Spanner 6 67 33 67
Ferry 100 100 35 100
Heavy 67 100 100 100

(% solved correctly for GPT-4o; domains in italics were already in Silver et al. 2024)

Length generalization

14

#2
Optimization

Hard Everyday Optimization Problems

16

each costume is represented in HEP is shown in
Appendix A.

(TODO: We should probably draw a picture that
illustrates each problem.)

3.1 Graph Coloring

In Graph Coloring (GT4 in the Garey &
Johnson book), we have an undirected graph 𝐺 =(𝑉 ,𝐸). The goal is to assign each node a color
such that no two adjacent nodes have the same
color. We are looking for a color assignment that
uses the fewest colors possible.

We can invert Graph Coloring by asking
for color assignments in which no two non-adja-
cent nodes can have the same color. By asking
the LLM to solve the inverted problem on the
complement of 𝐺 (which has an edge between two
nodes if and only if there was no edge between
them in 𝐺), we can present the problem as inverted
while retaining the original solution. This ensures
that inverting the problem does not change its
difficulty.

We have constructed three costumes that are not
obviously about graph coloring.

 Student Groups. 𝑉 represents a set of
students, and 𝐸 represents friendships. A teacher
wants to assign students to as few groups as pos�
sible, while ensuring that no student is distracted
by a groupmate who is also a friend.

 Parties with Exes. 𝑉 represents a set of
people, and 𝐸 represents which friends used to be
in a romantic relationship with each other. Some�
body wants to celebrate their birthday with their
friends, while avoiding any awkwardness arising
from exes being at the same party. They want to
minimize the number of parties they have to plan.

 Taekwondo Tournament. 𝑉 represents
participants in a Taekwondo tournament, 𝐸 repre�
sents which participants will be fighting one an�
other in the tournament. The tournament organizer
wants to assign participants to warm�up rooms,
without giving opponents the chance to study each
other in advance.

3.2 Knapsack

(TODO: finish diagram)

12
kg

In Knapsack (MP9 in Garey & Johnson), we
have a knapsack with some capacity 𝐶 ∈ ℕ and
a set of items with weights 𝑤1,…,𝑤𝑛 ∈ ℕ and
values 𝑣1,…, 𝑣𝑛 ∈ ℕ. The goal is to find a subset
of items that maximizes the sum of the values of
these items, under the constraint that their total
weight must not be greater than the knapsack’s
capacity.

In the inverted variant, the goal is to minimize
the selected items’ value. To prevent the situation
where no items are selected, we add the constraint
that the items must at least fill the knapsack. By
asking the LLM to solve the inverted problem on
a knapsack of capacity ∑𝑤𝑖 − 𝐶, the optimal
solution consists of the items that were left out
of the knapsack in the standard variant. Thus, the
original and inverted problem have the same diffi�
culty.

We have constructed three costumes that are not
obviously about weights and values.

 Lemonade Stand. We have 𝐶 liters of
lemonade to sell at our lemonade stand and would
like to sell it for as much money as possible. Each
of our 𝑛 customers offers to pay a price 𝑣𝑖 for 𝑤𝑖
liters of lemonade.

 Sightseeing. We have 𝐶 hours to spend in
Paris and would like to visit attractions that give us
maximal total satisfaction. Each of the 𝑛 possible
attractions will give us some satisfaction 𝑣𝑖 and
take 𝑤𝑖 hours to visit.

 Party Planning. We have a decoration bud�
get of 𝐶 for the party we are planning, and we wish
to maximize the total coolness of our party. Each
potential decoration item has a coolness score of𝑣𝑖 and a price tag of 𝑤𝑖.
3.3 Traveling Salesman

(TODO: add diagram)
In Traveling Salesman (ND22 in Garey &

Johnson), we have a set 𝐶 = {1,…, 𝑛} of cities,
and for any pair of cities, we have a distance𝑑(𝑖, 𝑗) ∈ ℕ. The goal is to find the shortest round
trip between the cities. That is, we are looking for
a permutation 𝜋 : 𝐶 → 𝐶 that minimizes𝑑(𝜋𝑛, 𝜋1) + ∑𝑛−1

𝑖=1 𝑑(𝜋𝑖, 𝜋𝑖+1).

Textbook problem (GRAPH-COLORING)
Given an undirected graph G = (V, E), assign
colors to the nodes such that no two
adjacent nodes have the same color. Use as
few colors as possible.

Costumed problem (! Parties With Exes)
Your birthday is coming up, and you want to
celebrate with all your friends. You do not
want people who used to be in a
relationship at the same party.
How many parties do you need?

Inverted problem
Given an undirected graph G = (V, E), assign
colors to the nodes such that no two non-
adjacent nodes have the same color. Use as
few colors as possible.

(Duchnowski, Pavlick, K., EMNLP Findings 2025)

Evaluation

● EHOP dataset: 3 NP-hard problems x 4 costumes x inverted/not;
25 random instances for each of 6 instance sizes.

● "Traditional" LLMs: GPT-4o, Llama-3.1-70B-Instruct, Qwen 3
"Reasoning" LLMs: DeepSeek-R1, Qwen 3 thinking

● Investigate how LLMs solve the problems by themselves ...

● ... and as "semantic parsers" that map the NL description
into linear programs, which are then solved by an exact solver.

17(Duchnowski, Pavlick, K., EMNLP Findings 2025)

Scaling to larger instances is hard

18

Problems solved much more accurately with help from the exact solver (ILP).

LLMs by themselves rarely beat the greedy heuristics.

4 5 6 7 8 9
Nodes

020
4060
80100

O
pti

m
iz

ati
on

 A
cc

ur
ac

y

Graph Coloring

GPT One-Shot CoT
GPT ILP Python
GPT OPRO
Llama One-Shot CoT
Llama ILP Python
Greedy4 8 12 16 20 24

Items

Knapsack

4 5 6 7 8 9
Cities

Traveling Salesman

Figure 2: Optimization accuracy as a function of instance size, on the textbook variants in EHOP$RANDOM.

cost of OPRO (up to 80 LLM calls per instance),
we evaluate it only on the instances of the largest
and the second$smallest size of each variant; the
smallest instances do not admit enough solutions
to run OPRO effectively. All OPRO experiments
are performed with GPT$4o.

Finally, we compare LLM problem$solving ac$
curacy on each problem to greedy baselines. For
Graph Coloring, the greedy heuristic colors
each node with the smallest color (where colors are
represented by the numbers 1, 2, …) that does not
conflict with any neighbors that have already been
colored. Nodes are traversed in descending order
of degree. For Knapsack, the strategy iterates
through the items in descending order of density
(value divided by weight), adding each item to the
knapsack if it still fits in the remaining capacity.
For Traveling Salesman, we use the strategy
of always moving to the closest unvisited city. We
apply the greedy baselines directly to the original
problem instances. All three greedy strategies are
linear$time algorithms which always produce valid
solutions, but give no guarantee of optimality.

4.3 Evaluation

We run all models with all prompting strategies
on all instances in EHOP and classify the correct$
ness of the output using the following scheme. An
incompatible response is syntactically flawed; it
can’t be parsed as a solution to the problem. An er-
roneous response can be parsed as a solution, but
it violates constraints of the underlying problem;
for instance, it assigns adjacent nodes in Graph
Coloring the same color. Among the remaining
responses, we distinguish between optimal and
suboptimal solutions, depending on whether they
find a configuration that optimizes the objective
as much as possible. ILP Python can additionally
produce ILP code failures if the LLM$generated

code cannot be executed without errors. See Ap$
pendix B for examples of each result category.

Our main evaluation metric is optimization
accuracy: the proportion of instances that were
solved optimally. We do not evaluate the distances
of the generated solutions from the optima, as
such a measure only makes sense if all solutions
are optimal or suboptimal. In our experiments, a
varying proportion of solutions is incompatible or
erroneous, distorting such a metric.

5 Results
5.1 Scaling to larger instances is hard

Figure 2 gives an overview of the optimization
accuracy for each textbook problem, as a function
of input size. One$Shot and Zero$Shot CoT are
not shown in the plot to enhance readability; they
perform worse than the other three (see Appen$
dix E). We find that accuracy drops as instances are
scaled up. It continues dropping rapidly for larger
instance sizes; even ILP$Python with GPT$4o is
below 5% optimization accuracy on GCP textbook
instances with 12 and 15 nodes.

ILP Python degrades the slowest with instance
size. In this condition, the LLM is still required to
make use of its “world knowledge” to flesh out the
textual problem into a fine$grained symbolic ILP
specification. However, it is freed up from having
to perform complex combinatorial reasoning and
keeping track of long chains of intermediate results
(Zhang et al., 2024), which becomes exponentially
harder as instances scale up. Unlike the other
strategies, the ILP approach does not expose the
LLM to the NP$hardness of the problem; the
complexity of the languagetoILP translation task
grows linearly with input length.

(Duchnowski, Pavlick, K., EMNLP Findings 2025)

Textbook is easier than "everyday" variants

19

Problem Variant One-Shot Zero-Shot CoT One-Shot CoT ILP Python Greedy
Textbook 42.0 60.7 60.0 56.0
Inverted −39.3 −59.4 −59.3 −41.3 GCP

98.0

Costumed −6.2 −6.5 −4.7 −43.8
Textbook 22.7 48.0 50.0 89.3
Inverted +4.6 +2.7 −4.7 −0.6 KSP

75.3

Costumed −2.0 −1.8 −2.2 −7.5
Textbook 34.7 31.3 37.3 86.0
Inverted −20.7 −14.0 −9.3 −10.7 TSP

30.7

Costumed −8.3 −1.7 −9.1 −37.1

(% op;mally solved with GPT-4o)

Takeaways

● LLM solvers methods do not scale well to larger instances.
Neurosymbolic "ILP-Python" method works best overall.

● All methods are vulnerable to costuming and especially inversion.
LLMs adapt solution paths for frequent textbook problems,
rather than performing general-purpose problem solving.

● Reasoning models (DeepSeek-R1)
are more robust to presentation,
but still do not reason reliably.

20(Duchnowski, Pavlick, K., EMNLP Findings 2025)

EHOP-HARD R1 from camera-ready version:

Problem Variant Zero-Shot ILP Python
Textbook 98.0 94.0
Inverted −75.0 −56.0 GCP
Costumed −4.0 +3.3
Textbook 48.7 97.3
Inverted +14.0 +0.7 KSP
Costumed +5.1 +1.6
Textbook 32.0 72.7
Inverted −0.7 +8.6 TSP
Costumed −10.7 +4.2

(DeepSeek-R1 on EHOP-HARD)

#3
Some general thoughts

Solving complex problems with LLMs

● LLMs offer unprecedented breadth of coverage and will play a role
in putting domain-independent problem solving into lay hands.

● Domain independence not as strong as one might think.

● Inclusion of symbolic representation helps with generalization.

22

Task Challenge Symbolic components

Planning length generalization generalized plans

Optimization presentation dependence linear programs

Collaborative optimization state tracking symbolic memory

(Collabora;ve op;miza;on: Jeknić, Duchnowski, K., SIGDIAL 2025)

Symbolic models are generalization machines

23

def hanoi(n, source, destination, aux):  
 if n == 1:
 print(f"move({source}, {destination})")  
 else:
 hanoi(n-1, source, aux, destination)  
 print(f"move({source}, {destination})")  
 hanoi(n-1, aux, destination, source)

If a symbolic program performs
correctly for input sizes 1, ..., 10,
it probably works for 20 too.

If a (neuro)symbolic model performs
correctly for depth 0-2, it probably
works for depth 3-12 too
(= compositionality).

(COGS corpus, Kim & Linzen 20)

(AM parser; Groschwitz, ..., K. ACL 2018)

LLMs don't generalize in that way

24

from gurobipy import GRB, Model, quicksum

def f():
 # Create the model
 model = Model("TSP")  

 # Objective: Minimize the total travel distance
 model.setObjective(quicksum(distances[i+1, j+1] * x[i, j]
 for i in range(n) for j in range(n) if i != j), GRB.MINIMIZE)

Problem Variant One-Shot Zero-Shot CoT One-Shot CoT ILP Python Greedy
Textbook 42.0 60.7 60.0 56.0
Inverted −39.3 −59.4 −59.3 −41.3 GCP

98.0

Costumed −6.2 −6.5 −4.7 −43.8
Textbook 22.7 48.0 50.0 89.3
Inverted +4.6 +2.7 −4.7 −0.6 KSP

75.3

Costumed −2.0 −1.8 −2.2 −7.5
Textbook 34.7 31.3 37.3 86.0
Inverted −20.7 −14.0 −9.3 −10.7 TSP

30.7

Costumed −8.3 −1.7 −9.1 −37.1
City 1 and city 2 are 8 miles apart.
City 1 and city 3 are 14 miles apart.
City 1 and city 4 are 13 miles apart.
City 2 and city 3 are 6 miles apart.
City 2 and city 4 are 15 miles apart.
City 3 and city 4 are 3 miles apart.

Problem Variant One-Shot Zero-Shot CoT One-Shot CoT ILP Python Greedy
Textbook 42.0 60.7 60.0 56.0
Inverted −39.3 −59.4 −59.3 −41.3 GCP

98.0

Costumed −6.2 −6.5 −4.7 −43.8
Textbook 22.7 48.0 50.0 89.3
Inverted +4.6 +2.7 −4.7 −0.6 KSP

75.3

Costumed −2.0 −1.8 −2.2 −7.5
Textbook 34.7 31.3 37.3 86.0
Inverted −20.7 −14.0 −9.3 −10.7 TSP

30.7

Costumed −8.3 −1.7 −9.1 −37.1
City 1 and city 2 are 15 miles apart.
City 1 and city 3 are 14 miles apart.
City 1 and city 4 are 14 miles apart.
City 2 and city 3 are 16 miles apart.
City 2 and city 4 are 1 miles apart.
City 3 and city 4 are 16 miles apart.

from gurobipy import GRB, Model, quicksum

def f():
 # Create the model
 model = Model("TSP")

 # Objective: Minimize the total travel distance
 model.setObjective(quicksum(distances[i, j] * x[i, j]
 for i in range(n) for j in range(n) if i != j), GRB.MINIMIZE)

Risk profiles

25

https://www.wsj.com/articles/nuclear-power-is-back-and-this-time-ai-can-help-manage-the-reactors-5ce03ae7

Seattle

Portland

Can we get correctness guarantees?

● No output of an LLM should ever be trusted;
there are no guarantees of correctness or generalization.

● Inductive risk (Hempel 1965): How do you infer universal
correctness from finite observations?

● We can potentially verify the universal correctness of an
LLM-generated symbolic artefact (generalized plan, LP, ...).

● But there is no verification without truth conditions!

26

Conclusion

27

Semantics needs truth conditions

Optimization with LLMs

Generalized planning with LLMs

Verification needs truth conditions

def hanoi(n, source, destination, aux):  
 if n == 1:
 print(f"move({source}, {destination})")  
 else:
 hanoi(n-1, source, aux, destination)  
 print(f"move({source}, {destination})")  
 hanoi(n-1, aux, destination, source)  

“Seman;cs with no treatment

of truth-condi;ons is not

seman;cs.” (Lewis 1972)

Thank you!

