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Abstract

This article discusses the use of phonetic features in automatic speech
recognition. The phonetic features are derived from acoustic parameters by
means of Kohonen networks. Behind the use of phonetic features instead of
standard acoustic parameters lies the assumption that it is useful to help the
system to focus on linguistically relevant signal properties. Previous experiments
using very simple hidden Markov models to represent the phones (with only one
mixture for each state and without a lexicon or language model) have indeed
shown that the phoneme identification rates on the basis of phonetic features
were considerably higher than on the basis of acoustic parameters. When eight
mixtures per state are used in hidden Markov modelling, the phoneme
identification rates for three different sets of phonetic features were found to be
lower than those obtained from a system in which the acoustic parameters are
modelled directly. It is suggested that the results are still good enough, however,
to further explore the use of phonetic features in a complete automatic speech
recognition system: if each phone sequence representing aword in the lexicon is
replaced by a sequence of underspecified phonetic feature vectors, the use of
phonetic features in the acoustic decoding may have certain advantages.
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1. Introduction

In most standard automatic speech recognition (ASR) systems, phone models are
computed from a spectral representation of the signal, usually mel-frequency cepstral
coefficients (MFCC's), energy and the corresponding delta (change) and delta-delta
(velocity or rate of change) parameters by means of hidden Markov modelling
(HMM). We increasingly find statements in the literature (e.g. Bourlard et al., 1996;
Pols, 1999) which express the belief that the limits of these purely stochastic ASR
systems (in terms of correct recognition rates) have been reached. Despite the high
correct recognition rates in applications for any particular task, or rather because there
still is a (small) gap between human and machine performance, the applicability of
ASR systems in large-vocabulary, speaker-independent environments where
spontaneous speech is used, is still limited. The reason for thisis that even if an ASR
system makes only few errors, they prevent an efficient user interaction with the
system.

One way to try and counteract this is by reducing the active lexicon by using
restrictive dialogue management (e.g. in a train information system which asks
» Where would you like to go?* instead of ,,Can | help you?‘, or which uses checks on
the processed information as in ,S0 you want to travel to Saarbriicken next
Tuesday?‘). Also, an extension of the lexicon by adding pronunciation variants (see
other articles in this volume) can enhance the probability of finding the correct word
candidate, because pronunciation variants allow for the effects of phonological
processes found in spontaneous speech (segment deletion and insertion as well as
change of phone class by assimilation or reduction), so that alternative lexical entries
are closer to the actual redlisations of the words. In this article, however, we shall
focus our attention on attempts to improve the acoustic decoding.

If the main problem of acoustic decoding in an ASR system is the variability in
the signal, the use of linguistic knowledge to reduce this variability may help to
improve the performance of standard ASR systems. In most ASR systems using
HMM, variation in the signal is modelled in phone or phoneme models by using
multiple mixtures per state to deal with alophonic and other systematic (gender,
speaker, etc.) variation, while random variation is handled by data descriptions in
terms of continuous density functions. This paper compares such modelling with a
more linguistically oriented modelling strategy. In our approach, variation in the
acoustic signal is reduced by mapping the acoustic parameters onto a set of phonetic
features, which are then used as input to HMM. We shall present results for three
phonetic feature sets.
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2. Thederivation of phonetic features

As in Koreman et a. (1999), two 50x50 Kohonen networks are used to derive
phonetic features from the acoustic parameters. The acoustic parameters are computed
from the microphone signals for read texts in the EuromO database spoken by 2 male
and 2 female speakers for each of the four languages German, English, Italian and
Dutch (29 minutes in total, not counting silent portions). A 15-msec Hamming
window is used with a pre-emphasis of 0.97 and a step size of 5 msec to compute 12
MFCC'’s, energy and the corresponding delta parameters, which are a weighted mean
of 5 frames centered around the current frame. The HTK package (Y oung et al., 1995)
is used for the derivation of the acoustic parameters as well as for HMM. Figure 1
shows the complete system.
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Figurel. Architecture of a hybrid consonant identification system which uses
acoustic-phonetic mapping
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Of the two Kohonen networks which we use, the first, ,, static* Kohonen network
is trained with the MFCC’s and energy parameters of all frames, and should provide
the best mapping for the steady states of phones, since no delta parameters (which
should be close to zero, since ideally there is little or no spectral variation during the
steady states) lead to unnecessary noise in the system. Since in the case of transitions
— which, as the name indicates, reflect spectral change — the delta parameters are
much more important than the MFCC and energy values from which they are derived,
a second, ,dynamic* Kohonen network is trained with MFCC's, energy and the
corresponding delta parameters (again, from all the frames). After the phonotopic
organisation, the Kohonen networks are calibrated for phonetic features by offering an
acoustic vector as input to the system and storing the corresponding phonetic feature
vector with the winning neuron. The phonetic feature vector is derived from the
segment label to which the acoustic frame belongs and consists of features with a pre-
defined value of 1 (present) —1 (not present) or O (not relevant). The vector size
depends on the phonetic feature set which is used. After presenting all the data for
calibration, an average across al phonetic feature vectors stored for a neuron is
calculated for each neuron. In the acoustic-phonetic mapping, the output of the
Kohonen networks consists of the averaged phonetic feature vector for the neuron
activated by the acoustic input vector (in fact, a weighted average for the K-nearest
neurons is used). In Koreman et a. (1997) the training, calibration and mapping
procedures are described in more detail. Three different phonetic feature sets are used
in the present experiments: IPA features (19 features directly derived from the row
and column labels of the IPA charts), a set of 16 features based on SPE and an
underspecified version of the latter feature set (derived by setting the value of
redundant features to zero). The features are listed in Table 1.

Tablel. IPA and SPE features used in the experiments

labial, dental, alveolar, palatal, velar, uvular, glottal,
IPA |plosive, fricative, nasal, lateral, approximant, trill, voiced,
mid, open, front, central, rounded

consonantal, syllabic, nasal, sonorant, low, high, central,
SPE | back, rounded, anterior, coronal, continuant, voiced, lateral,
strident, tense
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The output vectors of the two Kohonen networks are ssmply concatenated for
each frame and modelled by means of hidden Markov models for each of the 53
phones (not phonemes). The reason for training and identifying phones is that, also
since we used four different languages, it is not useful to create one hidden Markov
model for the clearly different redlisations of for instance /r/ as a retroflex
approximant or an aveolar or uvular trill. Each phone is therefore modelled
separately. The hidden Markov models are ssimple 3-state, left-to-right models, in
which no state can be skipped; only the diagonal covariances are used. The same
models are used in the baseline system, in which hidden Markov models are trained
on the acoustic parameters directly, i.e. without mapping onto phonetic features. In
none of the experiments do we use a lexicon or language model, since we want to
evaluate the effect of using phonetic features on the acoustic decoding per se. Using a
lexicon and language model would prevent phone confusions which lead to non-
words or sequences of words which the language model does not allow; of course,
conclusions about the usefulness of acoustic-phonetic mapping in a complete ASR
system must be drawn with extra care, sinceit is at least theoretically possible that an
improvement at the acoustic decoding level does not change the performance in a
complete system. Thisisthe caseif all possible phone confusions are prevented by the
lexicon and/or language model. Another reason for interpreting our results with careis
that we perform a phone identification task (same test and training data) with pre-
segmented phones, so that the results are an indication of, but not immediately
generalisable to areal ASR situation. The reason for performing identification instead
of recognition is the small amount of training data. Control experiments in which a
recognition task is carried out with the TIMIT database are underway. Phoneme
identification results are obtained by pooling different allophones of each identified
phoneme.

3. Relation to previous experiments

In Koreman et al. (1999), all hidden Markov models consist of 1 mixture per state,
both in the experiments using phonetic features and in the one using acoustic
parameters. The phoneme identification results of these experiments are shown in
Table 2.

Clearly, the use of phonetic features leads to an improvement of the phoneme
identification rates in our experiments. Not only do we find better phoneme
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Table 2.

Phoneme

identification
parameters and three sets of phonetic features

results for

acoustic

Acoustic parameters 15.6 %
IPA features 42.6 %
SPE features 36.2 %
Underspecified SPE features 46.1 %

Koreman & Andreeva

identification results, we also find in comparable experiments in which only
consonants were identified (Koreman et al., 1998) that the confusions between phones
are phonetically much more acceptable (since the phones differ in fewer phonetic

based on the |PA consonant chart.

Table 3.

Table 2 shows that the phone [r] is correctly identified in 84% of the cases when
IPA features are used as input to HMM, whereas when we perform HMM directly on
the acoustic parameters it is not even present in the list of the most often identified
consonants. We further find that acoustic-phonetic mapping leads to confusions with
phonetically similar phones. In the case of [r] confusions with another trill, namely

features) than if we use acoustic parameters for HMM. Thisis exemplified in Table 3,
which shows consonant confusions for acoustic parameters and for phonetic features

Some consonant confusions on the basis of acoustic parameters versus |PA
features. Only the main confusions are shown.

C r J m n
Ac.Par. |g (61%) |£ (53%) |w (23%) |w (28%)
£ (16%) | j (18%) (£ (18%) [n (18%)
w (13%) |n (12%) |m (16%) |rR (16%)
n (13%) |£ (12%)

R (10%)

IPA feat. [r (84%) |j (94%) |m (63%) |n (26%)
R (5%) |z (6%) |n (11%) |m (21%)
| (4%) D (10%) |n (20%)
r (6%)
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[r], and with another aveolar liquid ([I]) make up the majority. If no mapping is
applied, confusions with [g], [£] and [w] are most frequent. These show little
phonetic similarity to [r]. Similar patterns are found for other phones, so that we
concluded that phone confusions are phonetically less severe when acoustic-phonetic
mapping is performed. This was more objectively confirmed by the average phonetic
misidentification score (APMS), which reflects the phonetic severity of the consonant
confusions (see Koreman et al., 1998). Further details are also given in Section 4.2.

4. Modédling variability

The Kohonen networks fulfill two functions ssimultaneously. First, since the acoustic
space is organised phonotopically in a Kohonen network, it can represent different
realisations of a phoneme in different parts of the phonotopic map. When the
phonotopic map is calibrated, the same vector of phonetic features can be attached to
different neurons, so that different variants of a phoneme can still have the same (or
very similar) representations in terms of phonetic features. Second, the Kohonen
network is used to map the acoustic parameter space onto the phonetic feature space,
which represents only the distinctive properties of the phones.

The first function of the Kohonen networks isin part comparable to that of using
multiple mixtures for each state in HMM. Compared to using a single mixture, which
leads to a continuous density function with a large variance (since the complete
variation for a phoneme must be modelled by only one continuous density function),
multiple mixtures can model allophonic variation more adequately by representing
different acoustic realisations of the same phoneme by means of several continuous
density functions with less variance. A comparison of the phoneme identification
results for HMM on the basis phonetic features (see Table 2) with HMM of acoustic
parameters, but this time using multiple mixtures, will tell us whether the good results
of the previous experiments, both in terms of the phoneme identification scores
(Section 4.1) and in terms of the phonetic severity of the confusions that occur
(Section 4.2) depend on the modelling of variation or on the different input space
(phonetic features instead of acoustic parameters).



54 Koreman & Andreeva

4.1. Comparison of the phoneme identification scores

In the experiment reported here, hidden Markov models are trained for each phone on
the basis of MFCC’s, energy and the corresponding delta parameters. Eight instead of
one mixture per state are used, except for the phone [n] (only one mixture per state),
for which we do not have enough training data to model 8 mixtures (it only occursin
Italian, and even then very infrequently). The phoneme identification rate is 63.7%,
which is 17.6 percent points higher than the best identification rate for phonetic
featuresin Table 2 (46.1% for underspecified SPE features).

How can we explain these results? Although we assumed that the phonetic
feature vectors should be more homogenous for different realisations of the same
phone, the homogenising effect of acoustic-phonetic mapping appears to be limited.
Different realisations of the same phoneme can be organised in different parts of the
phonotopic map and still get the same phonetic feature vector attached to them, but
they will normally be affected by the phonetic feature vectors of acoustically similar
phones. Take for example the different possible readlisations of /I/ in English: in
syllable-final position, it isrealised as a, dark 1, with an [u]-like acoustic quality due
to the bulging of the tongue body, while syllable-initially the more neutral (schwa-
like) tongue position results in a ,clear 1. Further, after voiceless plosives the same
phoneme can be (partially) devoiced and realised with friction. The example makes
clear that the neurons activated by these different allophonic variants may be activated
by other, but very different phones as well: the ,,dark-1 neuron“ may aso be activated
by close or mid-close back vowels, whereas neurons activated by ,clear |“ may also
be activated by schwa or other neutral vowels; neurons which are activated by the
devoiced ,I* may also be activated by fricatives. Depending on the frequency of
activation by different phones, the calibration (which averages all the feature values of
the activating phonemes) can lead to substantialy different phonetic feature values
(which are an average across the phonetic features values of all activating frames) for
the different allophones. If this actually occurs in our data, using multiple mixtures
should also lead to an increase in HMM performance for phonetic feature input. In
order to evaluate this, three experiments were carried out (one for each feature set).
Except for the size of the input vector, the experiments were exactly the same as the
multiple-mixture experiment with acoustic parameters. Table 4 shows the phoneme
identification results with 8 mixtures.

Comparison with Table 2 shows that using multiple mixtures in the HMM
experiments which use phonetic features indeed leads to an increase in the
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performance of the system. Nevertheless they never reach the performance achieved
by 8-mixture HMM of the acoustic parameters.

Table4. Phoneme identification results for acoustic
parameters and three sets of phonetic features
using 8 mixtures per statein HMM

Acoustic parameters 63.7 %
IPA features 54.2 %
SPE features 54.1 %
Underspecified SPE features 58.4 %

4.2. Comparison of the phonetic severity of phone confusions

In previous experiments (see Section 3), we found that the confusions between phones
were less severe when phonetic features were used for HMM than when acoustic
parameters were used. In order to evaluate this for the 8-mixture experiments
presented in Section 4.1 we computed an average phonetic misidentification score
(APMS). This measure scores differences between consonants on the phonetic
categories manner, place and voicing and between vowels on the categories degree of
opening, frontness and rounding by multiplying the percentage of confusions
(normalised for each phoneme, to give all phonemes the same weight, irrespective of
their number of realisations) by the number of misidentified phonetic categories, and
dividing the result by the total of all the misidentification percentages. Confusions
between vowels and consonants were given a maximal penalty (3) if they differed in
voicing (i.e. if the consonant is voiceless), and otherwise 2. This leads to APMS
values between 1 (minimal number of misidentified phonetic categories in a phone
confusion) to 3 (maximal number of misidentified phonetic categories).

In Koreman et a. (1998) the APMS value for consonant identification on the
basis of IPA features (1.57) was 0.22 lower than for acoustic parameters (1.79). Since
the range of APMS values is only 2, this difference is more than 10% of the APMS
range. The APMS values for the experiments in Section 4.1 are given in Table 5. The
table shows that the advantage of a lower APMS value for phonetic features in
comparison to acoustic parameters disappears when 8 mixtures are used in HMM. The
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APMS values are very similar, although the confusions between consonants are
somewhat less severe for underspecified SPE features than for any other input
parameters, in particular acoustic parameters. On the other hand, the confusions
between vowels are more severe for phonetic features.

Table5. APMS values across al phones, and for consonants and vowels
separately, for 8-mixture HMM of acoustic parameters, IPA, SPE and
underspecified SPE features

acoust. par. | PA SPE under spec. SPE
all phones 1.63 1.65 1.67 1.65
consonants 1.64 1.62 1.63 1.58
vowels 1.63 171 1.73 175

5. Combined acoustic parameters and phonetic features

The results from the HMM experiments with multiple mixtures in Section 4 raise the
guestion whether the use of phonetic features is at all helpful. In order to test this, we
combined the acoustic parameter vector with the vector of underspecified SPE
features. Of all previous experiments using phonetic features, underspecified SPE
features led to the highest phoneme identification. The correct phoneme identification
rate in the experiment using a combined input vector is not only lower than if we use
only acoustic parameters, with 56.4% it is even lower than in the experiment where
only underspecified SPE features are used (58.4%).

6. Conclusion and discussion

The results so far show that the use of linguistic information in the form of acoustic-
phonetic mapping does not lead to an improvement in the phoneme identification rate
compared to HMM of the acoustic parameters when multiple mixtures per state are
used. The advantage of phonetically less severe confusions between phones when
phonetic features are used instead of acoustic parameters that was found in previous
experiments (using 1 mixture per state) also disappears.
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Although the use of phonetic features does not lead to a better acoustic decoding
per se, we can also look at the results more favourably. The fact that there is no (or a
small) reduction in the phoneme identification rates (and no consistent difference in
the phonetic severity of the phone confusions reflected in the APM S measure) means
that phonetic features can still be useful if we exploit them better. In a complete
system (with a lexicon and language model), we should not first identify phones on
the basis of phonetic features, and then use the phones for comparison with the
lexicon. Instead, the phonetic feature vectors themselves should be used directly. In
order to achieve this, a single phonetic feature vector must represent each phone at the
end of the acoustic decoding. This vector cannot be taken from the output of the
Kohonen networks directly, since there each phone, which consists of several frames,
is represented as a sequence of phonetic feature vectors (one vector for each frame).
We can use the Viterbi algorithm in HMM to model the phones (as before), and derive
a single phonetic feature vector from the means of the central state of each phone
model. This would have the additional advantage of reducing contextual influences.

If we then define the words in the lexicon as sequences of underspecified
phonetic feature vectors derived from the distinctions in the phonological system of a
language (instead of representing words as sequences of phonemes), we can explicitly
ignore the value of afeature derived from the signal if that feature is underspecified in
the definition of the word in the lexicon. In this way, coarticulation effects (causing
variability within and across words) can be handled more easily, which would lead to
better word recognition. This approach is reminiscent of the comparison between the
phonetic features derived from the signal and the lexical entries in the FUL
(Featuraly Underspecified Lexicon) system developed by Lahiri (1999) and Reetz
(1998, 1999), in which the exploitation of underspecified phonetic features is also
central to the ASR system.
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