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DO PHONETIC FEATURESHELP TO IMPROVE
CONSONANT IDENTIFICATION IN ASR?

Jacques Koreman, Bistra Andreeva & William J. Barry

University of the Saaland, Institute of Phonetics
P.O. Box 151150 D-66041Saabriicken, Germany

ABSTRACT

The hidden Markov modelling experiments presented in
this paper show that consonant identification results can be
improved substantially if a neural network is used to extract
lingusticdly relevant information from the aoustic signa
before gplying hidden Markov modelling. The neural
network — o in this case acombination d two Kohoren
networks — takes 12 mel-frequency cepstral coefficients,
overal energy and the mrrespondng celta parameters as
inpu and ouputs distinctive phoretic fedures, like
[tuvular] and [tplosive]. Not only does this preprocessng
of the data lead to better consonant identification rates, the
confusions that occur between the wnsonants are less
severe from a phoretic viewpoint, as is demonstrated. One
reason for the improved consonant identificaion is that the
aousticdly variable mnsonant redisations can be mapped
onto identicad phoretic feaures by the neura network. This
makes the inpu to hidden Markov modelling more
homogenous and improves consonant identificaion.
Furthermore, by using phoretic feaures the neural network
helps the system to focus on lingusticdly relevant
informationin the aoustic signal.

1. INTRODUCTION

The work presented in this article is related to ather work in
the aeaof automatic speed reagnition [1,2,3], which also
uses phoretic feaures to recgnise speed. The reason for
using phortic feaures is that, as Bitar & Espy-Wilson pu
it, by wing phomtic fedures we "diredly target the
lingustic information in the signal and ... minimize other
extralingustic information that may yield large speeth
variability" [1] (p. 141D. In contrast to Bitar & Espy-
Wilson, who we a knowledge-based event-seeking
approach for extrading phomtic feaures from the
microphore signal on the basis of amustic aes, the
mapping from the aoustic to the phoretic-feaure domain
is performed by reural nets in the experiments which we
shall describe below. We shall compare the cnsonant
identificaion results from two experiments, one of which
uses aoustic-phoretic mapping and another one which
does nat. To pu an end to any doults you may have éou
the answer to the question in the title immediately, the
answer is"yes".

2. A HYBRID CONSONANT
IDENTIFICATION SYSTEM

Two consonant identification experiments were caried ou
in which segments were modelled by simple left-to-right 3-
state hidden Markov models, with ead state having orly a
single Gausdan function to model the observation
probabiliti es [4]. In ore experiment, which we shall cdl the
baseline  experiment, 12 mel-frequency  cepstral
coefficients, overall energy and the crrespondng dlta
parameters were used as inpu to hidden Markov modelli ng
diredly. In the seomond experiment, these aoustic
parameters were used as inpu for two perallel 50x50
Kohoren networks [5] which map the aoustic parameters
onto 14 phomtic fedures, like [tuvular] and [tplosive].
The phoretic feaures for the mnsonants are derived from
the three dimensions of the IPA chart (place manner,
voicing). The first network maps the mel-frequency cepstral
coefficients and energy orto phoretic feaures, while the
seoond retwork maps the delta parameter onto (the same!)
phoretic feaures, the output vedors from the two neural
network were ncaenated and wsed for hidden Markov
modelling. The reasons for using two nreural networks
instead of one ae not relevant for the following dscusson
and are eplained in [6,7]. No lexicon a language model
were used.

3. DATA

The aoustic parameters were mmputed from read passages
from the EuromO database for English, German, Italian and
Dutch (2 male and 2female speekers for ead language). A
SAMPA transcription [8] was avail able for ead of the read
passages. This SAMPA transcription was adapted to caer
for our needsin several ways:

¢ Plosives and affricates were labell ed by two segments:
one for the dosure ("p0" = voicdess closure; "b0" =
voiced closure) and ore for the burst-plus-aspiration,
("p", "t", "k") or friction pert ("f", "s", "S", "z", "Z").
This was necessry, becaise the place of articulation
of the plosive or affricate caana be determined from
its closure, so that the neura nets canna determine a
feaure value for the mnsonant’s placeof articulation
onthe basis of frames belongngto the dosure.

* Although the SAMPA transcription symbad for the
English approximant /r/ is the same & for the dveolar
trill in Italian and Dutch (by some speékers and in



some regions), its redisation is very different. We
used /rapr/ to label the English approximant, reserving
Irl for the dveolar trill .

¢ The German SAMPA symbad /v/ is used to describe a
sound which is normally redised as a labiodental
approximant (IPA symbal /v/). We have therefore
labelled it /vapr/, to dstinguish it from English, Italian
and Dutch fricaive /v/.

¢ InDutch, the SAMPA symbadl /w/ is used to describe a
labiodental approximant, and here, too, we have
adopted the label /vapr/ to describe it. The
transcription symbad /w/ is reserved for the bilabial
approximant, which orly occurs in English and Italian.

*  Further, Dutch has both an aveolar and a uvular “r”-
sound which we shall transcribe /r/ (as in Italian) and
IR/ (asin German), respedively.

¢ Insomediaeds of Dutch, thereisno/G-x/ oppasition.
Since there were only few redisations of the Dutch
voiced velar fricative /G/, we replaced it by /x/.

¢ In oder to have more training dita for the HMMs, we
poded Italian geminate @nsonants with non
geminates.

Eadh segment was modelled by a hidden Markov model
(HMM). In the identification step consonants, not the
segments modelled by hdden Markov models, were
identified. The cnsonant /t/ for example was defined in the
phoreme dictionary as the (optional) HMM for "p0Q"
followed by the HMM for "t". Different language- and
speker-spedfic variants of /r/, such as /rapr/, Ir/ and IR/,
were modelled by dfferent HMM's; otherwise, the same
labels were used for different alophores of the same
sounds, as for instance for dark and clea /I/. Only
intervocdic consonants were used in this experiment (for
reasons explained in [6,7]). Note that in the hidden Markov
modelli ng identificaion step, no restrictions were impased
on the onsonant which can be identified, so that for
example in German, Italian and Dutch /T/ and /D/ could be
identified despite the fad that these phoremes only occur in
English.

4. THE EFFECT OF MAPPING ON
CONSONANT IDENTIFICATION

In the experiment in which acoustic parameters are mapped
onto phoretic feaures, 52.00% of the @mnsonants (with 32
possble mnsonants) are identified corredly. In the baseline
experiment, the percentage of corredly identified
consonants is only 1317. In the mapping experiment all
consonants are identified better, except /D/ (in English
only) and /C/ (in German only). Withou amustic-phoretic
mapping, the maority of the other consonants are
misidentified more often than nd; many o them are never
identified correctly.

The overal percentages reported above ae influenced
strondy by the number of redisations for eat consonant.
Since we ae interested in a phoretic analysis of error

patterns acossthe mnsonants regardless of the number of
ocaurrences in the database, we have @mputed the
percentage of corred identificaions for ead consonant
separately. The average aorred identification score (ACIS)
is then computed as

total of al corred identificaion percentages
ACIS= O00O0O0O0OO0O0bOoooobobooo
number of consonantsto be identified

where the multiple is the total of the percentages along the
diagoral of the confusion matrix and the denominator is the
number of rows in the nfusion matrix. We thus
compensate for the nsonants adua number of
ocaurrences and gve eat consonant equal weight. The
ACISis 68.47% when mapping is applied and oy 31.22%
when it is not. The reason why ACIS with mapping is only
doude that withou mapping, while the rred
identificaionrate is aimost four times as high, is that many
infrequent consonants were drealy identified well in the
baseline experiment. We will try to ofer a phoretic

explanation for this findingin the following sedion.

The onsonant misidentifications also show an interesting
tendency. An incorredness coefficient, which we shall cdl
the average phoretic misidentificaion score (APMS) was
computed as

phonetic misidentification coefficient
APMS= OJ0O000O0O0O0O00O0O0O00O00OO
sum of the misidentifications

The phoretic misidentification coefficient is the sum of all
the prodwcts of the misidentificaion percentage (@l
percentages in nondiagorel cdls of the cnfusion matrix)
times the number of incorredly identified phoretic
caegories (place ad manner of articulation, and vacing).
This gives a measure of the severity of the aror in terms of
phoretic feaures, with pessgble values between 1 (either
placeor manner or voicing wrong and 3 (place manner
and voicingwrong). This sore went down from 1.79 when
nomappingisapplied to 157 when it is. Thisindicates that
after mapping, the incorredly identified consonant is on
average doser to the phoretic identity of the consonant
which was produced. The number of confusions on 2 o 3
phoretic caegoriesisreduced substantially.

5. A PHONETIC INTERPRETATION
OF THE TWO MEASURES

If we look into the phoretic detail which hides behind the
ACIS measures for the two experiments, we find some
interesting patterns. Althoughat first sight there seems to
be a negative arrelation letween the number of
redisations of a mnsonant and its corred identificaion
percentage in the baseline experiment, this correlation is
not borne out by the data. Althoughall consonants with n>
100 rave low identificaion rates in the baseline experiment
(15.8% or les9, not al "rare" consonants (n < 100 are
identified well. This is $own in table 1, which lists all
consonants with n< 100,



Table 1: Corred identificaion percentagesin the
baseli ne (no mapping) and mapping experiment for all
consonants with n< 100, ordered acording to corred
identificaion percentage in the baseline experiment

Cons no mapping mapping n
C 1000 750 8
J 1000 1000 4
L 1000 1000 10
D 97.8 913 46
w 94.1 1000 17
rapr 912 965 57
X 882 934 76
S 781 906 32
R 50.0 775 80
g 476 57.1 21
vapr 352 66.7 54
b0z 280 96.0 25
i 17.6 941 17
h 6.7 867 15
N 3.8 6.2 26
p 14 333 72
f 12 64.6 82
pOf 0.0 1000 3
pOs 0.0 722 54
b 0.0 44 84
b0z 0.0 703 37

A closer look at table 1 shows that the @nsonants which
are recogrised best (corred identificaion rate > 80%) are
mostly language-spedfic oconsonants: /C/ (German), /J/
(Italian), /L/ (Itaian), /D/ (Engdlish), /w/ (Engdlish, Italian),
Irapr/ (Endlish), /x/ (German, Dutch). It seems that
consonants which do na contain crosslanguage variability
are aousticdly more homogenous and therefore recognised
better in the baseli ne system than ather soundk.

Table 2: Corred identificaion percentages in the
baseline (no mapping) and mapping experiment for all
affricaes and the mrrespondngfricatives

mapping Corr. mapping
Affric./] no yes fric. no yes
pOf 0.0 1000 | f 12 644
pOs 0.0 722 | s 31 64.7
po0S 0.0 402 | S 781 906
b0z 0.0 703 | z 104 505
b0z 280 960 | Z nointervocdic red.

That affricates are not recognised well despite the fad that
they are mostly languege-spedfic can be eaily understood
the cmporent parts (closure ad friction), which are
modelled by separate hidden Markov models, occur in all
langueges and are therefore probably lesshomogenous. The
affricaes are remgnised much better when mapping is
applied, as is down in table 2. The fricaives which
correspondto the affricates are dso recognised better.

The identification d voicdessplosives /p/, /t/ and /k/ aso
improves gredly (the difference between baseline and
mapping experiment is 319, 324 and 582 percent points,
respedively, with consonant identification rates under 6%
in the baseline experiment). Espedally /k/, which varies
widely from a velar to a pre-velar place of articulation
depending on the identity of the surroundng vowels, is
identified much better.

Another source of variation in the redisation o voicdess
plosives is the presence or absence of aspiration: English
and German have aspirated vaicdess plosives, wheress
Italian and Dutch do na. It seems unlikely that the
variation in aspiration can be better handed by the system
which wes mapping, becaise the different spedra
properties of the apiration do no so much depend onthe
placeof articulation d the consonant as on the foll owing
vowel (of which, one muld say, it is the voicdess
redisation). This is corrobaated by the confusions which
occur after mapping: athoughthe voicdessplosives /p/, /t/
and/k/ are mnfused with nonplosives far lessoften than in
the baseline system, they are confused with ead aher
quite frequently.

As is well-known, the onsonant /n/ is more mntext-
sensitive than any ather due to its gedra dependence on
the neighbouing vowels. Its identificaion improves by 80
percent points (from 6.7% in the baseline system to 867%
in the mapping system). This again stresses the adility of
the neura network to map acusticaly variable signals onto
the same phoretic feaures. The &ility of the system which
uses awmustic-phoretic mapping to hande dlophoric
variation so well can be eaily understood the neura
network(s) on the one hand resped the aoustic variability,
which leads to dfferent allophores being modelled in
different parts of the phondopicdly organised Kohoren
network(s), while on the other hand it outputs the same
phoretic feaure vedor for the different allophores of a
phoreme.

It is probably nat only this homogenising effed of the
mapping which increases the cnsonant identification rates.
It is difficult to explain some of the improvements that we
find when mapping is applied. Thisis for example the cae
for /f/, for which the mnstraints on its articulation do nd
seam to leave much room for variation: nat only does /f/
require apredse labiodenta articulation, so that the place
of articulation is less variable than for /S/, for instance,
there is also hardly a resonating cavity before (i.e.
downstream) its articulation pdace so that no strong



context-dependent variation shodd be expeded on that
acount either. The improvement which is found must
probably be put down to the adility of the neural net to
seled lingusticdly distinctive phoretic feaures which
allow for a better separation d the cnsonants in hidden
Markov modelling. This lies behind the APMS measure
presented in the previous ®dion and shows in the types of
confusions which accur in the baseline and in the mapping
system: whereas consonants are anfused with phoreticdly
very different consonants in the baseline system, these
confusion accur far less often in the system which uses
aooustic-phoretic mapping. In the baseline system, /r/ is
never identified as itself, but confused with /g/ in 6% of
the cases, as well as with /L/ (16%), /w/, (13%) and several
other phoremes. After mapping, /r/ isrecognised asitself in
85% of itsredisations, and rext rarely as/R/ and /I/, which
are both phoreticdly close to /r/, being a trill and an
alveolar approximant like /r/, respedively.

For another sound which behaves very differently in the
baseline and the mapping system, namely /j/ (differencein
identification 765 percent points), a similar behaviour
pattern is found In the baseline system, /j/ is identified as
itself for only 18% of its redisations, and confused with /L/
(53%), 1J (18%), /rapr/, Irl and /gl (6% ead). Although
espedaly the onfusions with /L/ and /J/, both being
palatalised consonants, are quite understandable, it
compares unfavourably with the identificaion o /j/ after
mapping. In the mapping system, /j/ is recognised as itself
in 94% of the cases and confused orly with /z/ (6%).

The same is true for al nasal phoremes except /J/, which
was alrealy identified corredly in 100% of its redisations.
In the baseline system they are not only confused with ather
nasals, but often also with /R/, /L/, Iwl/, Irapr/ and /vapr/. In
the mapping system, they are mainly confused with ather
nasals. It seems therefore that the neural net helps to
identify the nasality of the cmnsonant.

It is obviously nat possble to dscussall the details in the
confusion matrices from the two experiments. For that
reason, we have included them on the CD-ROM version o
the proceedingsin [MAPHANG.GIF] and [BASELINE.GIF].

6. CONCLUSIONS

Asis clea from the mnsonant identificaion results for the
two hidden Markov modelling experiments presented
above, amustic-phoretic mapping leals to better consonant
identificaionrates, as refleded in the higher ACIS value in
the mapping experiment than in the baseline experiment.
Furthermore, the onfusions that occur in the mapping
experiment are less gvere than in the baseline experiment
from a phoretic viewpaint. This is refleded in the lower
APMS value in the mapping experiment. The better
performance of the system when amustic-phoretic mapping
is used can be put down to its ability to map amusticdly
variable cnsonant redi sations to the same phoretic feaure
vedor on the one hand and its ability to seled and wse only
lingusticdly relevant, distinctive information in the

aooustic signal on the other. Thus, the results from our
experiments confirm Bitar & Espy-Wilson's assumption
quaed in the introduction.

In Bitar & Espy-Wil son's experiments [1], the experimental
results were better when a (phoretic) feaure-based
representation (FBR) was used as inpu to hidden Markov
modelli ng than when a cepstral-based representation (CBR)
was used, but "CBR outperformed FBR when higher
mixtures were used. The better performance ca be
atributed to better modeling o the richer spedral
information contained in CBR' [1] (p.1413. In ou
mapping system, the rich spedral information contained in
the aoustic parameters is nat lost, but in fad used by the
Kohoren retworks when they self-organise. In so far, the
effed of using a neura net is smilar to that of using
multi ple mixtures: it alows the system to asciate very
different (all ophoric) spedral charaderistics with the same
consonant. In ou system, an advantage can be seen in the
fad that, athough the user must define the size of the
Kohoren network(s), the requirements on the user to dedde
on the achitedure of the HMM for ead of the consonants
are relaxed withou losing the functional advantages of the
use of multi ple mixtures.
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